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Abstract. Data capital has emerged as a key driver of green and low-carbon development in China’s 

agricultural sector. Utilizing panel data from 31 Chinese provinces spanning 2012 to 2023, this study employs 

a two-way fixed effects model to examine the direct impact and underlying mechanisms of data capital on 

agricultural carbon emissions. The empirical results reveal that: (1) Data capital significantly reduces 

agricultural carbon emissions, with notable regional heterogeneity. The mitigation effect is more pronounced 

in major grain-producing regions compared to non-grain-producing areas; (2) Fiscal support for agriculture 

positively moderates the impact of data capital on carbon emissions reduction; (3) Land management scale 

serves as a threshold variable, with a single threshold identified. Based on these findings, this study recommends 

that the government further promote investment in agricultural data capital, encourage land consolidation to 

achieve economies of scale, and enhance fiscal policies supporting digital agriculture. These strategies 

collectively advance agricultural digitalization and facilitate the transition toward low-carbon agriculture. 

Keywords: digital transformation, low-carbon agriculture, data capital, agricultural carbon emissions, 

threshold effects 

Introduction 

Reducing agricultural carbon emissions is essential to achieve high-quality, 

sustainable agricultural development. However, China’s agricultural sector remains 

heavily reliant on traditional input-intensive practices and extensive management, 

resulting in low resource-use efficiency and persistently high carbon intensity (Zhang and 

Shen, 2025). This not only compromises the sustainability of agricultural production but 

also poses significant challenges to achieving the global 1.5°C climate target. With the 

rapid development of the digital economy, data has become increasingly integrated into 

agricultural production processes (FAO, 2021), offering promising pathways for 

emissions reduction. Against this backdrop, investigating the impact of data capital on 

agricultural carbon emissions is of both theoretical and practical significance. It enriches 

the understanding of how digital and green development strategies can be synergized, and 

informs policy measures for promoting low-carbon agricultural transitions. 

The concept of data capital has evolved along with advances in internet technology, 

cloud computing, and artificial intelligence (Ye and Li, 2017). Officially introduced at the 

2015 Institute of Electrical and Electronics Engineers (IEEE) Cloud Computing 

Conference, data capital is defined as a unique form of capital based on data elements, 

which creates value through digital technologies and intelligent platforms (Teece, 2018). 

Traditional approaches to managing agricultural carbon emissions are hindered by 

inefficient factor allocation, outdated monitoring tools, and in-sufficient policy integration 
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(Cai et al., 2025). In contrast, the application of data capital offers a new technological 

paradigm. For instance, Internet of Things (IoT) devices can collect real-time data on soil 

moisture, equipment usage, and fertilizer application. With the aid of algorithmic models 

to track carbon footprints, farmers can adopt precision farming techniques such as variable-

rate fertilization and automated machinery scheduling (Bocca et al., 2016). These practices 

not only improve productivity but also substantially reduce carbon emissions. 

However, the efficacy of data capital in reducing agricultural carbon emissions is 

influenced by contextual factors, particularly production conditions and policy support. 

Inadequate fiscal support can undermine stakeholders’ willingness to invest in digital 

infrastructure and adopt low-carbon practices (Yang, 2023). Meanwhile, land 

management scale plays a critical role in determining the effectiveness of digital and low-

carbon agricultural technologies (Lowder et al., 2016). Larger-scale landholdings 

facilitate broader adoption of these technologies by lowering fixed costs and improving 

carbon efficiency. Understanding the moderating roles of fiscal policy and land scale is 

essential for maximizing the emission-reduction potential of data capital. 

Prior research in this field falls into three broad categories: (1) Determinants of 

agricultural carbon emissions: Studies employing models such as LMDI (Tian et al., 

2014), Tapio decoupling (Xiong et al., 2020), and extended STIRPAT (Wei et al., 2023) 

have found that factors including rural labor migration (Xiong et al., 2016), economic 

development, mechanization (Guan et al., 2023), human capital (He et al., 2018), land 

transfer (Tang and Chen, 2022), agricultural service provision (Chen et al., 2022), and 

public investment (Song et al., 2023) can reduce emissions. (2) Digitalization and 

emissions reduction: Scholars have confirmed that green Information and 

Communications Technology (ICT) (Xiu and Min, 2025) and the broader development 

of the digital economy (Wang et al., 2024; Jin et al., 2024) significantly curb emissions, 

although regional disparities persist. (3) Economic effects of data capital allocation: 

Existing literature highlights data capital’s role in enhancing farmer incomes (Xu et al., 

2022) and promoting economic growth (Tang, 2021). 

Despite these contributions, two major research gaps remain. First, while existing studies 

explore agricultural digitalization, they tend to emphasize internet usage or specific 

technologies, with limited focus on data capital as an economic production factor. Second, 

research on data capital primarily investigates its economic benefits, overlooking its 

ecological value, particularly in reducing agricultural carbon emissions. To address these 

research gaps, this study constructs a two-way fixed effects model using China’s provincial 

panel data from 2012 to 2023. Furthermore, it utilizes both moderating and threshold 

models to examine the roles of fiscal support and land management scale. The study aims 

to: (1) quantify the impact of data capital on agricultural carbon emissions using 

interprovincial panel data, (2) investigate how fiscal support moderates the relationship 

between data capital and agricultural carbon emissions, and (3) identify threshold effects of 

land management scale. The findings will provide theoretical insights into digital-green 

synergies and offer practical policy levers for low-carbon agricultural transformation. 

Theoretical analysis 

Impact of data capital on agricultural carbon emissions 

Data capital reduces carbon emissions by enabling precision in the allocation of 

production factors. According to the Resource-Based View (RBV) (Peteraf and Barney, 

2003), the integration of heterogeneous internal and external resources can generate 
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sustainable competitive advantages. Traditional agricultural production is often limited by 

the low mobility of land, labor, and capital (Han et al., 2018), resulting in inefficient resource 

allocation and high carbon emission intensity. In contrast, data capital—characterized by 

non-rivalry and near-zero marginal cost (Yang et al., 2024)—transcends the constraints of 

traditional resource endowments, redefining the logic of factor configuration within 

agricultural ecosystems. By leveraging technologies such as the IoT, blockchain, and 

artificial intelligence, data capital optimizes resource allocation mechanisms (Ahmed et al., 

2022), promoting a transformation model centered on precision and efficiency. 

In the dimension of resource allocation, data-driven intelligent decision-making 

systems contribute to both emission reduction and efficiency improvement. For instance, 

IoT-enabled water-fertilizer integrated management systems collect real-time 

multidimensional environmental data (e.g., soil moisture, air temperature, humidity, pH 

levels) to dynamically adjust fertilization and irrigation strategies (Zhang et al., 2021), 

thereby reducing redundant inputs and lowering emissions. Regarding resource 

utilization, data capital breaks through the physical limitations of traditional production 

factors, enabling collaborative allocation across multiple agents. By aggregating 

heterogeneous data from machinery operations, irrigation systems, and storage facilities 

(Arif et al., 2024), agricultural big data centers utilize algorithms to identify emission 

sources with precision and enhance the utilization efficiency of idle resources. 

Simultaneously, data-driven operational guidance reduces reliance on experience-based 

decision-making, lowering the carbon footprint per unit of output (Luo et al., 2024). 

Data capital also promotes carbon emission reduction by driving industrial up-grading 

and transformation. Obstacles to low-carbon agricultural development—such as being 

locked into low-end industrial structures and lacking decarbonization technologies—persist 

throughout the supply chain (Sovacool and Geels, 2016). With its high fluidity, data capital 

dissolves industrial boundaries, supports the digital reconstruction of supply chains 

(Pickren, 2018), and accelerates industrial transformation. In terms of industrial structure, 

data capital propels agriculture from traditional extensive modes toward low-carbon 

operations across production, supply, and sales. For example, supply chain big data plat-

forms can optimize logistics routes, reducing transportation energy consumption (Li, 2019), 

while blockchain technologies improve the transparency of green certification, enhance 

consumer trust, and expand demand for low-carbon products. In terms of sup-ply chain 

coordination, data capital integrates upstream and downstream information flows, opening 

new paths for emission reduction. It empowers specialty agriculture (e.g., organic farming) 

through market analysis and brand building, thereby enhancing product value and reducing 

carbon intensity per unit (Agbelusi et al., 2024). Moreover, the integration of agriculture 

with e-commerce, tourism, and other sectors—enabled by data capital—creates 

comprehensive low-carbon industrial chains encompassing “production–processing–

services” (Zhang and Zhang, 2024). Through the digital empowerment of the entire supply 

chain, data capital effectively curbs agricultural carbon emissions. 

Based on the above, the following hypothesis is proposed: 

Hypothesis 1 (H1): Data capital significantly inhibits agricultural carbon emissions. 

 

The moderating role of fiscal support policy for agriculture 

The development and deployment of data capital in agriculture rely heavily on new 

infrastructure such as broadband networks, IoT platforms, and digital communication 

systems—investments that entail high initial costs and generate considerable positive 

externalities (Chao, 2020). Fiscal support thus plays a vital role in addressing market failures 
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and infrastructure gaps. Government investment in new infrastructure reduces operational 

costs for agricultural stakeholders (Pinstrup-Andersen and Shimokawa, 2006). For instance, 

intelligent pesticide spraying systems can reduce pesticide drift and usage by 65%–75% 

(Zhao, 2021), but their widespread adoption depends on fiscal expenditures in base station 

construction and network integration. Simultaneously, subsidies for agricultural machinery 

and conservation programs ease capital constraints faced by operators, thereby accelerating 

the diffusion of low-carbon technologies. Smart agricultural machinery equipped with 

precision irrigation, fertilization, and pesticide application functions significantly reduces 

energy consumption and methane emissions compared to traditional practices, with the 

extent of its adoption directly affecting carbon intensity (Chachei, 2024). 

In addition, fiscal policies can internalize the externalities of carbon emissions through 

mechanisms such as ecological compensation and carbon tax rebates, reshaping 

stakeholders’ emission-reduction decisions. Effective agricultural carbon governance 

requires a coordinated advancement of digital infrastructure and technological 

innovation, wherein fiscal support acts as a key moderating variable. 

Based on the above, the following hypothesis is proposed: 

Hypothesis 2 (H2): Fiscal support for agriculture positively moderates the inhibitory 

effect of data capital on agricultural carbon emission intensity. 

 

The threshold role of land management scale 

The effectiveness of data capital is closely tied to the configuration of agricultural 

resources, particularly the spatial characteristics of land use. The degree of land 

consolidation significantly influences the coupling between data capital and traditional 

production factors (Ge et al., 2017). In regions with highly fragmented landholdings, 

dispersed plots impede the efficient collection, transmission, and analysis of data, weakening 

the ability of data capital to regulate machinery deployment, fertilization, and pesticide use 

with precision (Adhikari and Manandhar, 2024). Smaller-scale operations are also less likely 

to invest in digital infrastructure, which limits the potential of data capital to coordinate land 

and labor inputs and constrains the large-scale application of low-carbon technologies. 

Conversely, expanding the scale of land management amplifies the effectiveness of data 

capital by generating scale effects. Through the establishment of farmland in-formation 

sensing networks, large-scale operations can monitor soil conditions and crop growth in 

real time, enabling precise machinery scheduling and efficient irrigation and fertilization 

strategies (SS et al., 2024), thereby significantly reducing emissions per unit area. 

Moreover, large-scale operators can accumulate and mine data assets, enabling iterative 

upgrades in low-carbon production technologies and establishing a virtuous cycle of “data-

driven precision management → emission reduction → efficiency improvement.” 

Based on the above, the following hypothesis is proposed: 

Hypothesis 3 (H3): The impact of data capital on agricultural carbon emissions is 

contingent on land management scale as a threshold condition. 

Materials and methods 

Model design 

Building on Chen et al.’s (2022) approach and supported by Hausman test results 

(significant at 1%), we employ a two-way fixed effects model to examine data capital’s 

impact on agricultural carbon emissions, having rejected random effects: 
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 𝐴𝐶𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝐶𝑖𝑡 + 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑡 + 𝑌𝑒𝑎𝑟𝑖 + 𝜀𝑖𝑡 (Eq.1) 

 

In Equation 1, i denotes province, t denotes year; 𝐴𝐶𝑖𝑡 represents the agricultural carbon 

emissions; 𝐷𝐶𝑖𝑡 denotes data capital; 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 are control variables; 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑖𝑡  and 

𝑌𝑒𝑎𝑟𝑖𝑡 represent province and year fixed effects, respectively; and 𝜀𝑖𝑡 is the random error 

term. 

To further assess the moderating effect of fiscal support for agricultural policy, we 

specify the following interaction model (Tang et al., 2025): 

 

 
𝐴𝐶𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝐶𝑖𝑡 + 𝛼2𝐸𝐶𝑖𝑡 + 𝛼3𝐴𝐶𝑖𝑡 × 𝐸𝐶𝑖𝑡 + 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡

+ 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑡 + 𝑌𝑒𝑎𝑟𝑖 + 𝜀𝑖𝑡 
(Eq.2) 

 

In Equation 2, 𝐸𝐶𝑖𝑡 is the moderating variable fiscal support for agriculture, and 

𝐷𝐶𝑖𝑡 × 𝐸𝐶𝑖𝑡 is the interaction term between data capital and fiscal support for agriculture. 

To test the potential nonlinear impact of land management scale, we employ a 

threshold regression model (Zhang et al., 2024): 

 

 
ACit = α0 + α1DCit × Iit(SCit ≤ q) + α2DCit × Iit(SCit＞q)

+ μControlsit + Provincet + Yeari + εit 
(Eq.3) 

 

In Equation 3, I (·) is the indication function of the model, 𝑆𝐶𝑖𝑡 is the threshold variable 

(land management scale), and q is the threshold value. 

 

Variable definitions 

The dependent variable is agricultural carbon emissions. Due to substantial data 

limitations in livestock statistics, this study focuses on crop farming. Following the 

methodology of Wei et al. (2023) and Wu et al. (2024) agricultural carbon emissions are 

decomposed into three categories: production input emissions (fertilizers, pesticides, 

agricultural films, diesel, and irrigation), soil emissions (N2O), and paddy field emissions 

(CH4). The calculation formula is as follows: 

 

 AC𝑖𝑡 = Σ(𝑃𝑖 × 𝑇𝑖𝑡) (Eq.4) 

 

In Equation 4, AC𝑖𝑡 denotes agricultural carbon emissions; 𝑃𝑖 represents the carbon 

emission coefficient of the i-type carbon source; 𝑇𝑖𝑡  is the amount consumed. The 

specific coefficients are (Wei et al., 2023；Li et al.,2022): fertilizer (0.8956 kg/kg), 

pesticide (4.9341 kg/kg), agricultural film (5.18 kg/kg), diesel (0.5927 kg/kg), irrigation 

electricity (266.48 kg/hm²). The soil N₂O emission coefficients for major crops were 

determined as follows (Shang et al., 2015): rice (0.24 kg/hm²), spring wheat (0.40 

kg/hm²), winter wheat (2.05 kg/hm²), soybean (0.77 kg/hm²), maize (2.53 kg/hm²), 

vegetables (4.21 kg/hm²), and other upland crops (0.95 kg/hm²). Following the 

methodology of Li et al. (2020), the CH₄ emission coefficients for paddy field were 

determined according to regional growing seasons (see Table 1). The total carbon 

emissions are obtained by summing emissions from all sources. For regression analysis, 

the values are logarithmically transformed. 

The core explanatory variable is data capital. Based on the logical sequence of 

“infrastructure → factor flow → value transformation,” the data capital index is 
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constructed across three dimensions: Data infrastructure, measured by indicators such 

as internet penetration rate (%), length of long-distance optical cables (104 km), and 

mobile switchboard capacity (104 households), which reflect the physical foundation 

enabling data value realization. Data dissemination capacity, captured through the 

number of webpages (104), domain names (104), mobile penetration rate (%), and per 

capita telecom revenue (CNY 100 million), quantifying the intensity and efficiency of 

data flow in agricultural supply chains. Data application level, evaluated by the number 

of Information Technology (IT) service providers (units), the proportion of IT personnel 

(%), and the digital financial inclusion index (%), indicating the practical integration of 

data into low-carbon agricultural productivity. Weights are assigned using the entropy 

method. 

 
Table 1. CH₄ emission coefficients from paddy fields (g/m2) 

Province Early rice Medium-season rice Late rice 

Beijing 0 13.23 0 

Tianjin 0 11.34 0 

Hebei 0 15.33 0 

Shanxi 0 6.62 0 

Inner Mongolia 0 8.93 0 

Liaoning 0 9.24 0 

Jilin 0 5.57 0 

Heilongjiang 0 8.31 0 

Shanghai 12.41 53.87 27.5 

Jiangsu 16.07 53.55 27.6 

Zhejiang 14.37 57.96 34.5 

Anhui 16.75 51.24 27.6 

Fujian 7.74 43.47 52.6 

Jiangxi 15.47 65.42 45.8 

Shandong 0 21.00 0 

Henan 0 17.85 0 

Hubei 17.51 58.17 39.0 

Hunan 14.71 56.28 34.1 

Guangdong 15.05 57.02 51.6 

Guangxi 12.41 47.78 49.1 

Hainan 13.43 52.29 49.4 

Chongqing 6.55 25.73 18.5 

Sichuan 6.55 25.73 18.5 

Guizhou 5.10 22.05 21.0 

Yunnan 2.38 7.25 7.6 

Tibet 0 6.83 0 

Shaanxi 0 12.51 0 

Gansu 0 6.83 0 

Qinghai 0 0 0 

Ningxia 0 7.35 0 

Xinjiang 0 10.50 0 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9325 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

The moderating variable is fiscal support for agriculture, defined as the ratio of 

government spending on agriculture, forestry, and water affairs to total agricultural 

output, following Lu et al. (2023). This variable captures the scale of public investment 

supporting rural and agricultural development. 

The threshold variable is land management scale, defined as the ratio of crop-sown 

area to the agricultural labor force, based on Tian and Zhang (2024). This indicator 

reflects changes in factor allocation efficiency and potential shifts in agricultural carbon 

emissions. 

Control variables include six factors, selected with reference to Tian et al. (2024): 

Agricultural mechanization level: total agricultural machinery power per agricultural 

worker; Crop structure: share of grain-sown area in total crop-sown area; Agrochemical 

input intensity: fertilizer use per unit of crop-sown area; Natural disaster severity: ratio of 

disaster-affected crop area to total sown area; Rural education level: average years of 

schooling among rural residents. 

 

Data sources 

The panel data covers 31 provinces in China from 2012 to 2023. Data sources include 

the China Statistical Yearbook, China Rural Statistical Yearbook, EPS Database, Peking 

University Digital Finance Research Center, and various provincial yearbooks. Missing 

values are addressed via interpolation. Descriptive statistics are presented in Table 2. 

 
Table 2. Variable definitions and descriptive statistics 

Variable type Variable name Variable definition Mean Deviation 

Explained 

variables 

AC: agricultural 

carbon emissions 

Production input emissions, soil emissions, 

and paddy field emissions (104 t) 
355.7088 245.9196 

Explanatory 

variables 
DC: data capital  Measured using the entropy method 0.2062 0.1610 

Control variables 

C1: agricultural 

mechanization level 

Total agricultural machinery power (104 

kW) / Number of agricultural workers (104 

persons) 

5.9517 13.9263 

C2: crop structure 
Grain-sown area (103 hm2) / Total crop-

sown area (103 hm2)  
0.6506 0.1429 

C3: agrochemical 

input intensity  

Fertilizer usage (104 t) / Crop-sown area 

(103 hm2) 
0.0351 0.0133 

C4: natural disaster 

severity 

Disaster-affected crop area (103 hm2) / 

Total sown area (103 hm2) 
0.1217 0.1047 

C5: rural education 

level  

Average years of education among rural 

residents (year) 
7.7311 0.8401 

Agricultural FIXED 

asset investment 

Agricultural fixed asset investment (CNY 

100 million) 
898.8990 901.4807 

Moderating 

variable 

EC: fiscal support 

for agriculture 

Government expenditures on agriculture, 

forestry, and water affairs (CNY 100 

million) / Agricultural output (CNY 100 

million) 

0.3050 0.3970 

Threshold 

variable 

SC: land 

management scale  

Crop-sown area (103 hm2) / Number of 

agricultural workers (103 persons) 
0.8208 0.4351 
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The descriptive statistics indicate that the log-transformed agricultural carbon 

emissions have a mean of 355.7088 and a standard deviation of 245.9196, highlighting 

significant potential for reduction. The data capital index exhibits a relatively low mean 

(0.2062) and moderate variation, suggesting suboptimal development with room for 

improvement. Control variables such as mechanization level, rural education level and 

agricultural fixed asset investment show considerable heterogeneity, while crop structure, 

input intensity, and natural disaster severity are relatively stable. Both the moderating and 

threshold variables exhibit substantial variation, pointing to potential influences on the 

relationship between data capital and carbon emissions. 

Results 

Analysis of baseline results 

The baseline regression results are shown in Table 3: Columns (1) and (3) present 

baseline regression results without incorporating province and year fixed effects. In 

Column (1), without control variables, the coefficient of data capital is –0.6164, while in 

Column (3), after including control variables, it slightly increases in magnitude to –

0.4432. Both coefficients are statistically significant at the 1% level. Columns (2) and (4) 

incorporate province and year fixed effects. In Column (2), the coefficient of data capital 

is –0.6340 without controls, remaining highly significant at the 5% level. When control 

variables are added in Column (4), the coefficient is –0.6343, still statistically significant. 

These results robustly confirm a significant negative relationship between data capital 

and agricultural carbon emissions. This finding supports Hypothesis H1, indicating that 

data capital effectively reduces agricultural carbon emissions. Through digital 

reconfiguration of production factors, data capital mitigates resource misallocation in 

traditional agricultural systems, thereby improving the efficiency of key inputs such as 

fertilizers and machinery. Additionally, precision agriculture technologies—such as 

remote sensing and intelligent algorithms—reduce carbon intensity per unit of land area, 

further con-attributing to emission reductions. 

Regarding the control variables, the agricultural mechanization exhibit significantly 

positive coefficients, suggesting they contribute to increased emissions. This may be due 

to higher fossil fuel consumption and accelerated decomposition of soil organic matter. 

Conversely, natural disaster severity significantly reduces emissions, likely by leading to 

a significant reduction in sown area while prompting farmers to switch to low-carbon, 

climate-resilient crop varieties, directly decreasing carbon emissions from current-season 

agricultural production activities (e.g., farm machinery operation and irrigation energy 

consumption). Other control variables—such as crop structure, agrochemical input 

intensity, and rural education levels—do not have statistically significant effects. The lack 

of statistical significance may stem from homogeneous crop patterns, offsetting effects 

of different agrochemicals, and the delayed adoption of sustainable practices despite 

education. 

 

Heterogeneity analysis 

To assess regional heterogeneity in the impact of data capital on agricultural carbon 

emissions, provinces are grouped into major and non-major grain-producing regions. The 

regression results are presented in Table 4. In major grain-producing regions, the estimated 

coefficient of data capital is –0.7458 and is statistically significant at the 10% level. In 
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contrast, in non-major grain-producing regions, data capital does not exhibit a statistically 

significant effect, indicating clear regional differences in its emission-reducing impact. 

 
Table 3. Estimation results of the baseline model 

Variable (1) (2) (3) (4) 

DC 
-0.6164*** -0.6340** -0.4432*** -0.6343** 

(0.0383) (0.3150) (0.0423) (0.2917) 

C1 
  0.0005* 0.0004*** 
  (0.0003) (0.0001) 

C2 
  -0.1597 -0.2645 
  (0.1055) (0.3191) 

C3 
  4.7652*** 2.2289 

  (0.9755) (3.6768) 

C4 
  -0.0865*** -0.0831*** 

  (0.0158) (0.0257) 

C5 
  0.0263 0.0203 

  (0.0453) (0.0391) 

Constant 
5.5751*** 5.5396*** 6.1388*** 6.2558*** 

(0.2115) (0.0307) (0.2658) (0.2609) 

Province FE No Yes No Yes 

Year FE No Yes No Yes 

N 372 372 372 372 

Pseudo R2 0.4323 0.5421 0.5410 0.5860 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. Cluster-robust standard 

errors in parentheses 

 

 
Table 4. Heterogeneity analysis by grain production region 

Variable Major grain-producing regions Non-major grain-producing regions 

DC 
-0.7458* -0.3335 

(0.3895) (0.2121) 

Constant 
5.9884*** 6.4109*** 

(0.3421) (0.3134) 

Control variables Yes Yes 

Province FE Yes Yes 

Year FE Yes Yes 

N 156 216 

Pseudo R2 0.7319 0.6211 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. Cluster-robust standard 

errors in parentheses. The major grain-producing regions include 13 provinces: Heilongjiang, Henan, 

Shandong, Sichuan, Jiangsu, Hebei, Jilin, Anhui, Hunan, Hubei, Inner Mongolia, Jiangxi, and Liaoning. 

All other provinces are classified as non-major grain-producing regions 

 

 

This heterogeneity can be attributed to the structural differences in agricultural 

production across regions. Major grain-producing areas are characterized by large-scale, 
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intensive farming, which fosters the accumulation of data capital and facilitates the rapid 

development and adoption of agricultural digital technologies. These advancements help 

reduce carbon emissions by improving resource allocation and operational efficiency. 

Conversely, in non-major grain-producing regions, agricultural production tends to be 

more fragmented and small-scale, resulting in higher costs and coordination barriers for 

the implementation of digital technologies. Additionally, these regions often prioritize 

secondary and tertiary industries over agriculture, leading to less policy attention and 

investment in agricultural emission reduction. As a result, the scale and efficiency effects 

of data capital are significantly weakened. 

 

Moderating effects test 

As shown in Table 5, the regression coefficient of data capital on agricultural carbon 

emissions is –0.3088, significant at the 10% level. The interaction term between data 

capital and fiscal support for agriculture is –0.2943 and is statistically significant at the 

1% level. These results suggest that increased fiscal support significantly enhances the 

carbon-reducing effect of data capital, thereby validating Hypothesis H2. 

A likely explanation is that government funding reduces the financial barriers 

associated with the adoption of data-driven technologies in agriculture. Specifically, 

targeted subsidies for the acquisition of agricultural machinery, the development of data 

platforms, and related initiatives lower the entry threshold for farmers and agricultural 

enterprises, accelerating the integration of data capital into production processes. 

Furthermore, public investments in remote sensing networks and the deployment of IoT 

infrastructure across farmland significantly strengthen the environmental governance 

capabilities of data capital, further contributing to emission reductions. 

 
Table 5. Moderating effects of fiscal support on the impact of data capital 

Variable AC AC AC 

DC 
-0.6343** -0.4555** -0.3088* 

(0.2917) (0.1948) (0.1763) 

EC 
 -0.1982***  

 (0.0638)  

DC×EC 
  -0.2943*** 

  （0.0458） 

Constant 
6.2558*** 6.0657*** 6.0870*** 

(0.2609) (0.2123) （0.2175） 

Control variables Yes Yes Yes 

Province FE Yes Yes Yes 

Year FE Yes Yes Yes 

N 372 372 372 

Pseudo R2 0.5860 0.6447 0.6678 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. Cluster-robust standard 

errors in parentheses 

 

 

Threshold test 

Using 500 bootstrap replications, we conduct statistical inference on the threshold 

effect and determine the number of thresholds associated with land management scale. 
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As presented in Table 6, a single threshold is statistically significant at the 1% confidence 

level, whereas the double threshold does not attain statistical significance. The identified 

threshold value is 0.4531, indicating that land management scale serves as a threshold 

variable in the relationship between data capital and agricultural carbon emissions. These 

findings provide empirical support for Hypothesis H3. 

 
Table 6. Threshold effect test 

Threshold 

variable 
Model P-value F-statistic 10% 5% 1% 

Threshold 

value 

SC 
Single threshold 0.0040 56.46 28.0508 36.1119 56.8957 0.4531 

Double threshold 0.1400 23.95 28.9572 38.3423 66.6572 - 

 

 

Table 7 presents the results of the threshold regression. Based on the estimated 

threshold value (0.4531), the effect of data capital on agricultural carbon emissions is 

analyzed across two intervals. In the first interval (≤0.4531), the coefficient of data capital 

is −0.7282. In the second interval (>0.4531), the coefficient decreases in absolute value 

to −0.3775. These results indicate that data capital consistently reduces agricultural 

carbon emissions, thereby supporting Hypothesis H3. However, the degree of 

effectiveness varies notably across different scales of land management, echoing the 

findings of Ma et al. (2024). 

A plausible explanation is that land management scale significantly influences 

agricultural operators’ capacity to integrate and utilize data capital. At moderate scales, 

data capital facilitates the precise allocation of production factors through digital 

technologies such as precision fertilization and smart irrigation, effectively eliminating 

carbon inefficiencies. However, once land scale exceeds the critical threshold, the in-

creasing complexity of production systems brings about challenges—including higher 

technical integration barriers and elevated coordination costs—that reduce the marginal 

benefits of data capital in emission reduction. Furthermore, large-scale farms of-ten reach 

a plateau in mechanization and face inflexibility in adjusting energy structures, which 

may partially offset the environmental gains brought by data capital. 

 
Table 7. Single threshold effect regression results 

Variable AC 

DC Interval 1: (SC ≤ 0.4531) 
-0.7282*** 

(0.0560) 

DC Interval 2: (SC＞0.4531) 
-0.3775*** 

（0.0405） 

Constant  
5.9976*** 

(0.1512) 

Control variables  Yes 

Province FE  Yes 

Year FE  Yes 

N  372 

Pseudo R2  0.6021 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. In parentheses are robust 

standard errors 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9330 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

Robustness test 

Lagged explanatory variable 

To verify the robustness of the baseline regression results, the explanatory variable—

data capital—is lagged by one period to account for potential time-delayed effects. As 

shown in Table 8, the coefficient of lagged data capital is −0.5051, which is statistically 

significant at the 5% level. This finding confirms that data capital continues to exhibit a 

significant negative effect on agricultural carbon emissions, consistent in both direction 

and significance with the baseline regression, thereby reinforcing the reliability of the 

results. 

 

Trimmed sample 

To mitigate the influence of exogenous shocks such as major policy changes and 

public health crises, data from the years 2013, 2020, and 2021 are excluded—an approach 

consistent with that of Li et al. (2024). The results, presented in Table 8, show that the 

coefficient of data capital remains at −0.6158, significantly negative at the 5% level. This 

is in line with the baseline estimates in both magnitude and significance, further 

demonstrating the robustness of the findings. 

 

Additional control variables 

To ensure robustness against omitted variable bias, two additional control variables 

are introduced: agricultural fixed asset investment (to control for the potential 

confounding effects of capital intensity on technological substitution) and effective 

irrigation rate (to capture the influence of water resource efficiency). The effective 

irrigation rate is defined as the proportion of effectively irrigated area to the total irrigated 

cropland area. As shown in Table 8, the coefficient of data capital is −0.5817 and re-

mains significantly negative at the 5% level. These results further validate the robust-ness 

and stability of the emission-reducing effect of data capital. 

 
Table 8. Robustness test results 

Variable Lagged DC Trimmed sample Additional control variables 

DC 
-0.5051** -0.6158** -0.5817 ** 

(0.2416) (0.2799) (0.2572) 

Control variables Yes Yes Yes 

Province FE Yes Yes Yes 

Year FE Yes Yes Yes 

N 341 279 372 

Pseudo R2 0.6339 0.5922 0.6100 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. Cluster-robust standard 

errors in parentheses. Effective irrigation area refers to cultivated land with stable water sources, level 

terrain, and complete irrigation infrastructure that can achieve normal irrigation in typical years 

 

 

Instrumental variable approach test 

Despite the aforementioned robustness checks, potential endogeneity concerns—such 

as omitted variable bias and sample selection issues—may still affect the baseline results. 
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To address this, an instrumental variable (IV) approach is employed, following the 

methodology of You et al. (2023). Specifically, the interaction term between the 1984 

postal and telecommunications service volume and the one-period lagged internet 

penetration rate is constructed as the IV. The 1984 postal service volume reflects the 

historical foundation of regional communication infrastructure, which plausibly 

influences long-term data capital accumulation but bears no direct impact on 

contemporary agricultural carbon emissions. When interacted with the lagged internet 

penetration rate, the IV captures the path-dependent diffusion of digital technology while 

mitigating reverse causality concerns through temporal lagging. This design enhances 

both the relevance and exogeneity of the instrument, thereby meeting the key validity 

conditions of instrumental variable estimation. 

Table 9 presents the two-stage least squares (2SLS) regression results. In the first 

stage, the IV demonstrates a significantly positive effect on data capital at the 1% level, 

confirming its strong relevance. The Lagrange Multiplier (LM) test rejects the null 

hypothesis of under identification, and the F-statistic exceeds the critical value threshold 

for weak instruments at the 10% maximal IV bias level, further affirming instrument 

strength and validity. In the second stage, the coefficient of data capital is estimated at 

−0.3228 and remains statistically significant at the 10% level. This confirms that, even 

after addressing potential endogeneity through a rigorous IV strategy, data capital 

continues to exert a significant negative impact on agricultural carbon emissions. The 

results thus provide further empirical support for Hypothesis H1. 

 
Table 9. Instrumental variable estimation result 

Variable The first stage The second stage 

DC 
 -0.3228* 

 (0.1664) 

IV-DC 
0.2544***  

(0.0197)  

Constant 
0.2723** 4.0239*** 

(0.1448) (0.2521) 

Control variables Yes Yes 

Province FE Yes Yes 

Year FE Yes Yes 

Kleibergen-Paap rk LM Statistic 39.29*** 

Kleibergen-Paap rk Wald F Statistic 166.48 

N 341 341 

***, **, * mean that the estimated results are significant at 1%, 5%, and 10%. In parentheses are robust 

standard errors 

Discussion 

The Chinese government explicitly proposed the strategic goal of “peaking carbon 

emissions by 2030 and achieving carbon neutrality by 2060” at the 75th Session of the 

United Nations General Assembly. As a fundamental industry in China, reducing 

agricultural carbon emissions is a crucial component of realizing this target. However, 

carbon emissions from the existing agricultural production system remain persistently 

high. With the quiet emergence of the digital economy, data has been designated as a new 
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factor of production, presenting new opportunities for reducing agricultural carbon 

emissions. 

The findings of this study reveal the role of data capital in reducing agricultural carbon 

emissions. Placing our discoveries within the broader literature enables a more nuanced 

understanding of the relationship between digital transformation and low-carbon 

agricultural development. The research on data capital presented here exhibits both 

consistencies and distinctions with existing studies on the digital economy. While our 

results align with research highlighting the environmental benefits of the digital economy, 

they diverge in critical aspects. Previous studies emphasize internet penetration rates and 

ICT adoption as drivers of emission reduction. In contrast, we position data capital as a 

distinct factor of production, underscoring that the value of data lies not only in 

connectivity but also in its capacity to optimize resource allocation—a dimension 

underexplored in prior research. 

Compared with existing literature, this study makes two key contributions: 

Theoretical contributions: This study enriches the literature on determinants of 

agricultural carbon emissions by elucidating the ecological impact of data capital. It also 

extends the discourse on the economic consequences of data capital allocation to include 

environmental externalities, offering new insights into the intersection of digital and 

green development. 

Practical contributions: By empirically analyzing the relationships among data capital, 

fiscal support, land scale, and carbon emissions, this study provides policy-relevant 

insights. It proposes a differentiated, dynamic policy framework for promoting 

agricultural low-carbon transformation, which may guide future governance and 

investment strategies. 

In addition, this study has certain limitations. First, there is the limitation of data 

coverage. Due to statistical constraints, carbon emission data from the livestock industry 

was not included, which may lead to an underestimation of the carbon reduction effects 

of data capital. Second, there are limitations associated with the panel data. For instance, 

constructing data capital indicators may fail to capture informal digital practices among 

small-scale farmers. Finally, due to space and time constraints, there are several areas that 

warrant further in-depth research. For example, the fiscal support indicators did not 

differentiate between types of subsidies (e.g., equipment purchase, technical training, or 

data services), resulting in less precise and detailed findings. Therefore, future research 

could conduct specialized analyses on livestock and poultry farming. Additionally, micro-

level data could be obtained through surveys to enable more accurate and targeted 

exploration. 

Conclusions and recommendations 

Conclusions 

Drawing on panel data from 31 Chinese provinces spanning 2012 to 2023, this study 

employs a two-way fixed effects model, a moderating effects model, and a threshold 

effects model to examine the impact of data capital on agricultural low-carbon 

development, while exploring the moderating role of fiscal support for agriculture and 

the threshold role of land management scale. The main findings are summarized as 

follows: 

Data capital significantly contributes to agricultural low-carbon development. Its 

accumulation exerts a notable inhibitory effect on agricultural carbon emissions. 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9333 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

Regional heterogeneity is evident in the effect of data capital. The emission-reducing 

effect is statistically significant in major grain-producing regions but becomes 

insignificant in non-major grain-producing regions. 

Fiscal support for agriculture plays a dual role. It not only reduces agricultural 

emissions directly but also enhances the inhibitory effect of data capital on emissions. 

Land management scale serves as a key threshold variable. A single statistically 

significant threshold (value = 0.4531) was identified. While data capital continues to 

suppress emissions on both sides of this threshold, the degree of effectiveness varies, 

indicating a non-linear relationship influenced by land scale dynamics. 

 

Recommendations 

Based on the above findings, the following policy recommendations are proposed: 

Increase Investment in Data Capital to Maximize Synergistic Emission Reductions: 

Governments should expand targeted support for smart agriculture initiatives by 

systematically developing agricultural data resource systems and upgrading 

infrastructure, including sensor networks and blockchain-based traceability platforms. At 

the provincial level, agricultural big data-sharing platforms should be established to dis-

mantle data silos. Additionally, comprehensive data collection systems spanning 

production and distribution chains should be promoted, with a focus on constructing 

agricultural carbon emission monitoring centers to enable real-time data exchange on soil 

moisture, machinery usage, and agricultural input application. 

Innovate Fiscal Support Mechanisms to Strengthen Policy Synergies: Introduce 

differentiated ecological compensation mechanisms to incentivize the adoption of digital 

technologies for carbon reduction. Higher-tier compensation should be granted to projects 

that integrate digital and low-carbon benefits, thereby discouraging reliance on traditional 

economic subsidies. The development of carbon footprint tracking tools, green credit 

schemes, and agricultural education programs can further steer data capital toward 

synergistic low-carbon transformation, ensuring that technological advancements 

translate into ecological benefits. 

Implement Differentiated Land Policies to Unlock the Potential of Scale: Establish 

carbon reduction pilot zones in major grain-producing regions, while designing 

adaptive strategies for non-major regions. Introduce a dynamic land management 

system by integrating digital evaluation tools into land transfer markets. Provide sub-

threshold operators with precision agriculture toolkits, while encouraging above-

threshold operators to implement real-time energy consumption monitoring. 

Furthermore, integrate digital emission reduction metrics into agricultural carbon ac-

counting frameworks and performance evaluations to foster a digitally enabled, low-

carbon agricultural development paradigm that balances productivity and 

environmental sustainability. 

Acknowledgements. This research was supported by a research grant from the Natural Science Foundation 

of Shandong Province under grant number ZR2023MG027. We would like to thank the authors for their 

hard work and the editors for their valuable comments and editorial treatment. We are also grateful for the 

valuable comments and suggestions of anonymous reviewers who have helped improve our manuscript. 

Conflict of interests. The authors declare no conflict of interests. The funders had no role in the design of 

the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the 

decision to publish the results. 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9334 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

REFERENCES 

[1] Adhikari, K., Manandhar, S. (2024): Modernization in land management. – Technical 

Report. DOI:10.13140/RG.2.2.12277.49121. 

[2] Agbelusi, J., Arowosegbe, O., Alomaja, O., Odunfa, O. A., Ballali, C. (2024): Strategies 

for minimizing carbon footprint in the agricultural supply chain: leverag-ing sustainable 

practices and emerging technologies. – World Journal of Advanced Research and Reviews 

23(3): 2625-2646. 

[3] Ahmed, I., Zhang, Y., Jeon, G., Lin, W., Khosravi, M. R., Qi, L. (2022): A blockchain‐and 

artificial intelligence‐enabled smart IoT framework for sustainable city. – International 

Journal of Intelligent Systems 37(9): 6493-6507. 

[4] Arif, M., Maya, J., Anandan, N., Pérez, D., Tonello, A., Zangl, H., Rinner, B. (2024): 

Resource-efficient ubiquitous sensor networks for smart agriculture: a survey. – IEEE 

Access. DOI: 10.1109/ACCESS.2024.3516814. 

[5] Bocca, F., Rodrigues, L. (2016): The effect of tuning, feature engineering, and feature 

selection in data mining applied to rainfed sugarcane yield modelling. – Computers and 

Electronics in Agriculture 128: 67-76. 

[6] Cai, Y., Zhang, F., Deng, X. (2025): Recoupled crop-livestock system can potentially 

reduce agricultural greenhouse gas emissions by over 40% in China. – Environmental 

Impact Assessment Review 112: 107756. 

[7] Chachei, K. (2024): Greenhouse gas emissions in the Indian agriculture sector and 

mitigation by best management practices and smart farming technologies—a review. – 

Environmental Science and Pollution Research 31(32): 44489-44510. 

[8] Chao, X. (2020): The path of new digital infrastructure to promote high-quality 

development in China. – Journal of Xi’an University of Finance and Economics 33(02): 

15-19. 

[9] Chen, Z., Tang, C., Liu, B., Liu, P., Zhang, X. (2022): Can socialized services reduce 

agricultural carbon emissions in the context of appropriate scale land management? – 

Frontiers in Environmental Science 10: 1039760. 

[10] FAO (2021): Digital Agriculture Report: Reaping the Benefits of Digital Technologies for 

Crop Production. – Food and Agriculture Organization, Rome. 

[11] Ge, D., Long, H., Ma, L., Zhang, Y., Tu, S. (2017): Analysis framework of China’s grain 

production system: a spatial resilience perspective. – Sustainability 9(12): 2340. 

[12] Guan, N., Liu, L., Dong, K., Xie, M., Du, Y. (2023): Agricultural mechanization, large-

scale operation and agricultural carbon emissions. – Cogent Food & Agriculture 9(1): 

2238430. 

[13] Han, H., Li, H., Zhao, L. (2018): Determinants of factor misallocation in agricultural 

production and implications for agricultural supply‐side reform in China. – China & World 

Economy 26(3): 22-42. 

[14] He, Y., Chen, R., Wu, H., Xu, J., Song, Y. (2018): Spatial dynamics of agricultural carbon 

emissions in China and the related driving factors. – Chinese Journal of Eco-Agriculture 

26(9): 1269-1282. 

[15] Jin, M., Feng, Y., Wang, S., Chen, N., Cao, F. (2024): Can the development of the rural 

digital economy reduce agricultural carbon emissions? A spatiotemporal empirical study 

based on China’s provinces. – Science of the Total Environment 939: 173437. 

[16] Li, J. (2019): A research on intelligent logistics mode reconstruction based on big data 

cloud computing. – China Business and Market 33: 20-29. 

[17] Li, J., Li, S., Liu, Q., Ding, J. (2022): Agricultural carbon emission efficiency evaluation 

and influencing factors in Zhejiang province, China. – Frontiers in Environmental Science 

10: 1005251. 

[18] Li, N., Shang, L., Yu, Z., Jiang, Y. (2020): Estimation of agricultural greenhouse gases 

emission in interprovincial regions of China during 1996–2014. – Natural Hazards 100(3): 

1037-1058. 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9335 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

[19] Li, Y., Zhao, T., Shu, T., Wei, Y. (2024): Impact of development level of digital economy 

on agricultural production efficiency under carbon emission constraint. – Chinese Journal 

of Eco-Agriculture 32(11): 1829-1842. 

[20] Lowder, S. K., Skoet, J., Raney, T. (2016): The number, size, and distribution of farms, 

smallholder farms, and family farms worldwide. – World Development 87: 16-29. 

[21] Lu, Y., Tian, Y., Zhou, L. L. (2023): Spatial-temporal evolution and influencing factors of 

agricultural carbon emissions in Sichuan Province. – Chin. J. Agric. Resour. Reg. Plan 

44(1): 1-14. 

[22] Luo, J., Zhuo, W., Liu, S., Xu, B. (2024): The optimization of carbon emission prediction 

in low carbon energy economy under big data. – IEEE Access 12: 14690-14702. 

[23] Ma, G., Lv, D., Tan, Y. (2024): Energy saving and emission reduction effects of land 

transfer and its mechanism. – Resources Science 46(11): 2210-2224. 

[24] Peteraf, M., Barney, J. (2003): Unraveling the resource‐based tangle. – Managerial and 

Decision Economics 24(4): 309-323. 

[25] Pickren, G. (2018): ‘The global assemblage of digital flow’ Critical data studies and the 

infrastructures of computing. – Progress in Human Geography 42(2): 225-243. 

[26] Pinstrup-Andersen, P., Shimokawa, S. (2006): Rural Infrastructure and Agricultural 

Development. – World Bank, Washington, DC. 

[27] Shang, J., Yang, G., Yu, F. (2015): Agricultural greenhouse gases emissions and 

influencing factors in China. – Chinese Journal of Eco-Agriculture 23(3): 354-364. 

[28] Song, S., Zhao, S., Zhang, Y., Ma, Y. (2023): Carbon emissions from agricultural inputs in 

China over the past three decades. – Agriculture 13(5): 919. 

[29] Sovacool, B., Geels, F. (2016): Further reflections on the temporality of energy transitions: 

a response to critics. – Energy Research & Social Science 22: 232-237. 

[30] SS, V., Hareendran, A., Albaaji, G. (2024): Precision farming for sustainability: an 

agricultural intelligence model. – Computers and Electronics in Agriculture 226: 109386. 

[31] Tang, C. (2021): Data Capital: How Data Is Reinventing Capital for Globalization. – 

Springer Nature, Dordrecht. 

[32] Tang, F., Tan, J., Qiu, F., Gu, S. (2025): How agricultural technological innovation 

influences carbon emissions: insights from China. – Frontiers in Sustainable Food Systems 

9: 1596762. 

[33] Tang, Y., Chen, M. (2022): Impact mechanism and effect of agricultural land transfer on 

agricultural carbon emissions in China: evidence from mediating effect test and panel 

threshold regression model. – Sustainability 14(20): 13014. 

[34] Teece, D. (2018): Profiting from innovation in the digital economy: enabling technologies, 

standards, and licensing models in the wireless world. – Research Policy 47(8): 1367-1387. 

[35] Tian, Y., Zhang J. (2014): Research on spatial-temporal characteristics and driving factor 

of agricultural carbon emissions in China. – Journal of Integrative Agriculture 13(6): 1393-

1403. 

[36] Tian, Y., Cai, Y., Zhang, H. (2024): The impact of digital economy on agriculture carbon 

emission efficiency: based on threshold effect and spatial spillover effect test. – J. 

Agrotech. Econ. 

[37] Wang, M., Li, J., Zheng, X. (1998): Methane emission and mechanisms of methane 

production, oxidation, transportation in the rice fields. – Scientia Atmospherica Sinica 22: 

610-621. 

[38] Wang, Z., Zhang, J., He, Y., Liu, H. (2024): A study on the potential of digital economy in 

reducing agricultural carbon emissions. – Heliyon 10(11). 

[39] Wei, M., Yan, S., Luo, S. (2023a): The impacts of scale management and technological 

progress on green and low-carbon development of agriculture: a quasi-natural experiment 

based on the establishment of major grain-producing areas. – Chin. Rural Econ. 2: 41-65. 

[40] Wei, Z., Wei, K., Liu, J., Zhou, Y. (2023b): The relationship between agricultural and 

animal husbandry economic development and carbon emissions in Henan Province, the 



Liu et al.: Has data capital reduced agricultural carbon emissions? Evidence from China 

- 9336 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9319-9336. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93199336 

© 2025, ALÖKI Kft., Budapest, Hungary 

analysis of factors affecting carbon emissions, and carbon emissions prediction. – Marine 

Pollution Bulletin 193: 115134. 

[41] Wu, H., Yue, Y., Shen, Y. (2024): Agricultural carbon emissions in china: estimation, 

influencing factors, and projection of peak emissions. – Polish Journal of Environmental 

Studies 33(4): 4791. 

[42] Xiong, C., Yang, D., Xia, F., Huo, J. (2016): Changes in agricultural carbon emissions and 

factors that influence agricultural carbon emissions based on different stages in Xinjiang, 

China. – Scientific Reports 6(1): 36912. 

[43] Xiong, C., Chen, S., Xu, L. (2020): Driving factors analysis of agricultural carbon 

emissions based on extended STIRPAT model of Jiangsu Province, China. – Growth and 

Change 51(3): 1401-1416. 

[44] Xiu, G., Min, D. (2025): Carbon reduction in green ICT development: the impact of energy 

consumption and productivity. – International Journal of Hydrogen Energy 102: 94-106. 

[45] Xu, X., Zhai, X., Wang, H. (2022): Research on the influencing mechanism of data capital 

on farmers’ income. – Mobile Information Systems 2022(1): 4683251. 

[46] Yang, J., Yang, D., Cheng, J. (2024): The non-rivalry of data, directed technical change 

and the environment: a theoretical study incorporating data as a production factor. – 

Economic Analysis and Policy 82: 417-448. 

[47] Yang, Z. (2023): Can the digitalization reduce carbon emission intensity?—The 

moderating effects of the fiscal decentralization. – Sustainability 15(11): 9006. 

[48] Ye, M., Li, G. (2017): Internet big data and capital markets: a literature review. – Financial 

Innovation 3: 1-18. 

[49] You, B., Zheng, M., Hu, Z., Wang, X. (2023): The impact of digital transition on total 

factor productivity of resource-based enterprises. – Resources Science 45(3): 536-548. 

[50] Zhang, B., Chen, X., Zhu, J., Kang, J., Pan, W., Zhao, Y. (2021): Design and experiment 

of integrated water and fertilizer system based on Internet of Things. – Journal of Chinese 

Agricultural Mechanization 42(3): 98-104. 

[51] Zhang, J., Zhang, W. (2024): Harnessing digital technologies for rural industrial 

integration: a pathway to sustainable growth. – Systems 12(12): 564. 

[52] Zhang, S., Fu, Y., Xia, Y. (2024): Effects of the policy of re-designation of counties as 

cities or city districts on the agricultural carbon emission: evidence from the Yangtze River 

Delta region in China. – Sustainability 16(18): 8088. 

[53] Zhang, W., Shen, Y. (2025): Toward low-carbon agriculture: measurement and driver 

analysis of agricultural carbon emissions in Sichuan province, China. – Frontiers in 

Sustainable Food Systems 9:1565776. 

[54] Zhao, C. (2021): Current situations and prospects of smart agriculture. – Journal of South 

China Agricultural University 42(6): 1-7. DOI: 10.7671/j.issn.1001-411X.202108039 


