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Abstract. The development of coal resources has caused serious environmental problems such as soil 

degradation and crop damage even as promoting economic development. Accurate and efficient 

determination of soil organic matter content is essential to contribute to controlling soil degradation and 

improving land fertility in mine-grain mixed zones. Therefore, a typical ore-grain composite area was 

selected as the research site. The collected soil spectral data were filtered and denoised, and the second-

order differential transformations were used to enhance the spectral characteristics. The competitive 

adaptive reweighted sampling (CARS) algorithm was used to screen the sensitive bands, and the inversion 

model of soil organic matter content was constructed based on partial least squares regression, random 

forest and XGBoost algorithms. The results show that the correlation between soil spectra and organic 

matter content can be improved by using SG denoising combined with second-order differential 

transformation to extract effective information of soil spectra. The CARS algorithm extracts important 

features, removes redundant spectral information, and improves modeling accuracy. In terms of inversion, 

the RF model built based on CARS feature extraction had the highest accuracy, and the prediction accuracy 

(R²) reached 0.95 in the low vegetation coverage area. The second was XGBoost, PLSR model inversion 

accuracy is the lowest, in high and low vegetation coverage area R² is 0.79 and 0.78, respectively. The 

results fully demonstrate the effectiveness and feasibility of machine learning methods for retrieving 

hyperspectral soil organic matter content. This research can provide theoretical and scientific basis for the 

rapid monitoring of large-scale soil organic matter. 

Keywords: ore-grain composite area, second-order differential transformation, XGBoost, differential 

vegetation cover, machine learning 

Introduction 

Soil plays an important role in the ecosystem (Sokol et al., 2022; Hartmann and Six, 

2023). As a potential carbon sink, SOM status is also a key indicator of the restoration 

and maintenance of ecological functions in degraded ecosystems (Lee et al., 2023). Since 

the Industrial Revolution, industrial production techniques have experienced 

extraordinary and swift transformations (Wang et al., 2021a). The steady increase in 

greenhouse gases’ levels has led to a global average temperature rise of 0.3-0.6℃, 

resulting in a cascade of environmental issues (Jones et al., 2023; Filonchyk et al., 2024). 

Coal mining and processing facilitate swift economic advancement while simultaneously 

instilling a range of ecological issues. Coal mining poses a serious threat to land resources 

and ecological environment (Bazaluk et al., 2023; Duo et al., 2024). Coal mining, a 

significant contributor to carbon emissions, is projected to devastate hundreds of square 

kilometers of agricultural land annually in China alone (Wang et al., 2015). Therefore, 



Pan et al.: Hyperspectral inversion of soil organic matter under differential vegetation cover scenario based on CARS-RF 

- 9396 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9395-9412. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93959412 

© 2025, ALÖKI Kft., Budapest, Hungary 

the prediction of soil organic matter distribution in ore-grain composite area is of great 

significance to local agricultural management. 

The traditional determination of organic matter content was mainly through chemical 

analysis methods. These methods exhibited high accuracy; however, they are intricate, 

time-intensive, and expensive, providing point-specific data that are unsuitable for large-

scale development (Chenu et al., 2024; Li et al., 2024). Hyperspectral technology has 

been extensively utilized in soil property prediction research owing to its rapid, 

straightforward, non-polluting, and non-destructive characteristics (Yang et al., 2021; Ai 

et al., 2022). Hyperspectral remote sensing technology by combining the quantitative 

relationship between spectral characteristics and soil organic matter content (Yang et al., 

2021; Dai et al., 2022). The results show that there is a significant correlation between 

soil organic matter content and spectral reflectance, especially in the wavelength range of 

400~2500 nm, and some bands (such as 600, 820 and 1600 nm) have a particularly 

significant inversion effect on soil organic matter content (Yang et al., 2021; Yuan et al., 

2024). In addition, the high-resolution nature of hyperspectral technology allows it to 

capture subtle changes in the soil spectrum, thus improving the inversion accuracy. 

Winter wheat, as an important grain crop, has a close relationship with soil fertility. The 

application of hyperspectral technique to soil organic matter content inversion in winter 

wheat farmland is also increasing gradually. Nonetheless, the model's performance and 

accuracy are significantly compromised by the interference from soil sample surface, the 

spectral testing environment, spectral noise, and issues such as information redundancy, 

multicollinearity, and overlapping absorption peaks in the spectral data (Wu et al., 2024; 

Sun et al., 2024). Prior research predominantly employed conventional transformations, 

including reciprocal, logarithmic, differential, and absorption peak depth techniques, to 

mitigate soil spectral noise. Additionally, they eliminated non-informative or redundant 

variables using methods, continuous projection algorithm (SPA), and competitive 

adaptive reweighted sampling (CARS) (Ye et al., 2008; Xia et al., 2021) to optimize the 

sensitive bands of organic matter, and improve the prediction accuracy and stability of 

the model. The CARS algorithm performs well in screening sensitive bands. Compared 

with the existing methods such as UVE and SPA, it can effectively enhance the accuracy 

and stability of the spectral preprocessing and feature band selection (Yuan et al., 2020a). 

In addition, inversion models are also crucial to improve the performance of 

hyperspectral inversion of SOM content (Gu et al., 2019). The commonly used inversion 

models mainly include regression model and machine learning model. (Huang et al., 

2020; Wang et al., 2024). The results show that the machine learning model performs 

better in the inversion of SOM content (Wang et al., 2021b, 2024a). Multiple models have 

been used to determine soil organic matter content. The results have shown that the 

accuracy of RF and SVM models is higher than the partial least squares regression models 

(Wang et al., 2024b). XGBoost is an ensemble learning algorithm proposed by Chen et 

al in 2016, which has been widely used in hyperspectral inversion of soil components 

(Chen and Guestrin, 2016). In terms of the performance, XGBoost, RF and SVM, in 

hyperspectral inversion of soil nickel content, XGBoost has had the best performance (He 

et al., 2024). Three integrated learning algorithms, namely XGBoost, were employed for 

the hyperspectral inversion of soil water content, with the accuracy ranking of the models 

as follows: XGBoost>RF> gradient lifting regression tree (Li et al., 2023). 

The coal-grain composite region in Henan is extensive and serves as a significant 

production area for coal and grain in China (Bai et al., 2024). However, long-term and 

high-intensity coal mining has had a huge impact and distribution of soil organic matter, 
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thereby affecting crop productivity (Feng et al., 2019; Chen et al., 2024). Establishing a 

reliable dynamic monitoring method for retrieving for soil conservation and improvement 

of cropland quality (Paul, 2016). 

This study examines the feasibility of employing hyperspectral remote sensing 

technologies to assess soil organic matter content in the Zhaogu mining area of Henan 

Province, China, we optimize a suitable spectral preprocessing method. The CARS 

algorithm is then used to screen the sensitive bands. The inversion models are constructed 

by combining RF, PLSR and XGBoost algorithms respectively, find the most efficient 

model. Our research has important theoretical and practical values. The quantitative 

inversion analysis of the soil reflection spectrum and soil organic matter content in coal 

mining regions can furnish theoretical insights for the establishment of a soil degradation 

monitoring network in these areas. At the same time, it also provides technical support 

for quantitative monitoring of SOM by spaceborne or aerial remote sensing hyperspectral 

technologies. 

Material and methods 

Study area 

Zhaogu Mining area (E 113°35 '50 "-113°36' 36", N 35°24 '24 "-35°25' 11"), is 

selected as the research area. This area is administrated by Huixian City, Xinxiang City, 

Henan Province. The land use predominantly consists of agriculture, with the primary 

cultivation method being summer corn followed by winter wheat. The mining region 

intersects significantly with the agricultural land, characterizing it as a typical coal-grain 

composite zone. The mining area is a typical continental monsoon climate of warm 

temperate zone, with an average temperature of 14.1 ~ 14.9℃ and an average annual 

precipitation of 580~600 mm, mostly concentrated in July and August. The mining region 

predominantly features tidal and paddy soils, distinguished by a deep soil profile, a loose 

surface layer, robust nutrient availability, and effective nutrient retention, making them 

conducive to diverse crop cultivation. Many years of mining activities in Zhaogu mining 

area have led to the formation of a wide range of coal mining subsidence areas. The 

subsidence has resulted in waterlogged regions, significantly affecting local land 

resources, the ecological environment, and agricultural output (Figure 1). 

Data collection and preprocessing 

Data acquisition 

In the Zhaogu Mining area, 50 samples were taken from both the low-vegetation 

coverage and high-vegetation coverage test areas. The collected sample data was divided 

into training samples and verification samples at a ratio of 7:3. One sample was chosen 

as a verification sample for every two samples beginning with the fifth sample, while the 

remaining samples served as the training samples. Some 35 samples were used for 

training, and another 15 samples were used for verification, across the two test areas. The 

original spectral data and SOM were introduced into the CARS algorithm. According to 

their relative importance, 32 characteristic bands were selected as potential input 

variables for the subsequent model. 

In the study area, the NDVI values of the entire area were calculated through remote 

sensing images. Then, based on the distribution of NDVI values, the areas with NDVI 

values greater than or equal to 0.7 were defined as high vegetation coverage areas, and 



Pan et al.: Hyperspectral inversion of soil organic matter under differential vegetation cover scenario based on CARS-RF 

- 9398 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9395-9412. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93959412 

© 2025, ALÖKI Kft., Budapest, Hungary 

the areas with NDVI values less than 0.7 were defined as low vegetation coverage areas. 

Utilizing NDVI distribution, the arrangement of sample points was conducted based on 

the distribution of the working face and the land use status in the mining area. Since a 

depth of 0-20cm is defined as the plough layer, it is the core distribution area of crop roots 

and the main area for nutrient absorption. Monitoring this layer of organic matter (SOM) 

can directly reflect soil fertility and agricultural production potential. In June 2023, soil 

sampling was conducted at a depth of 0 to 20 cm using a soil sampler with a diameter of 

5.72 cm. Each sampling point was amalgamated into a single soil sample based on the 

five X-shaped soil samples surrounding the central point. 

 

Figure 1. Overview of the research area; (a), (b) Geographical location of the study area; (c) 

Sampling points; (d) Sampling sites with high vegetation cover; (e) Sampling sites with low 

vegetation cover 

 

 

The gathered soil samples were desiccated in a well-ventilated area of the laboratory. 

Upon the soil's desiccation, the dry samples were compacted and rubbed with a plexiglass 

rod to eliminate contaminants, including plant residues and gravel. The soil samples were 

divided into two parts, a part of the organic matter is measured by the potassium 

dichromate oxidation method. Strong oxidants are used to decompose the organic matter 

at high temperatures, and the content is calculated by titrating the remaining oxidant dose. 

While an additional portion was analyzed via laboratory spectroscopy. A portable PSR-

3500 (Spectral resolution :3.5 nm) spectrometer with a wavelength spectrum of 

350~2500 nm and an optical fiber with a field Angle of 25° was used to measure the 

spectrum of soil samples. A 50 W halogen lamp was used as the light source and a BaSO4 

plate was used as the calibration plate. The laboratory reflectance spectra of 100 soil 

samples were collected. During the measurement, to ensure that the depth of the entire 

sampled soil is representative, each sample was measured three times. Before each 

measurement, the surface was re-flattened or the sample cup was rotated 90° to reduce 

the error caused by uneven samples. The average of the three spectra was taken as the 

final spectrum of the sample. 
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Data pre-processing 

The soil spectral data was divided into two groups according to the vegetation 

coverage at the sampling points, and the inversion accuracies of SOM content under 

different crop growth conditions were compared. In order to reduce noise interference, 

two spectral intervals of 350-450 nm and 2400-2500 were eliminated, and the remaining 

450-2400 nm of soil reflection spectra was used to invert SOM content. To effectively 

eliminate the spectral noise produced by soil reflection due to environmental factors and 

acquisition equipment, the Savitzky-Golay (SG) algorithm was employed for smoothing 

and denoising. This method can keep the shape and width of the signal unchanged while 

filtering the noise (Zhang et al., 2021). After repeatedly debugging the window size and 

the polynomial number, the quadratic polynomial with a window size of 15 was selected 

for filtering. The soil spectrum was divided into two noise regions: a severe noise region 

and a light noise region. The serious noise regions in high and low vegetation cover areas 

were 1000-1100 nm, 1800-1900 nm, 950-1050 nm, 1750-1800 nm, respectively. The light 

noise areas were 450~1000 nm, 1100~1800 nm, 1900~2400 nm and 50~950 nm, 

1050~1750 nm, 1800~2400 nm, respectively. The soil spectral curve before and after 

filtering is shown in Figure 2. Compared with the original spectral data, the spectral 

quality after filtering was obviously improved. On the basis of first-order differentiation, 

the linear trend can also be eliminated. Therefore, we performed the second-order 

differential processing on the data processed by SG filter. 

 

Figure 2. Soil’s Original spectrum and filtered reflectance curve (a,b) high vegetation coverage 

areas,(c,d)low vegetation cover areas. Annotation: Curves of different colors represent the 

reflectance of the soil in the vegetation-covered area varying with wavelength under different 

samples or conditions, reflecting the soil's ability to reflect electromagnetic waves of different 

wavelengths in this area 
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Data and processing 

Figure 3 shows the schematic diagram of this research. Firstly, the collected spectral 

data was filtered and denoised, and the spectral features were enhanced by the second-

order differential spectral changes. The CASR algorithm was used to optimize the spectral 

feature subset, and PLSR, RF and XGBoost were respectively used to establish the 

inversion models for the optimal feature combinations, so as to achieve an accurate 

inversion of SOM content under different vegetation coverages. 

 

Figure 3. Schematics diagram of this research 

 

 

CARS combines Monte Carlo (MC) and PLS regression coefficients to perform 

feature selection (da Silva and Wiebeck, 2018). Then, unnecessary and redundant spectral 

information is removed. The optimal data variable as 30 is determined by conducting 

Monte Carlo cross-validation modeling for variable subsets of each wavelength using the 

PLSR method. The algorithm is divided into four steps: 

(1) Monte Carlo method is used to sample the data randomly. 

(2) The attenuation index is used to evaluate the selected samples, and the samples 

with large absolute weights are retained. When the absolute weight value is less than the 

threshold, the samples are discarded, and the weight W is defined as Eq. (1): 

 

 𝑊 =
|𝑏𝑖|

∑ 𝑏𝑖
𝑛
𝑖=1

 (Eq.1) 

 

Variable removed by CARS algorithm, set W to 0. 

(3) The CARS algorithm is applied to the selection of feature bands, and the bands 

with a greater impact on the modeling accuracy are selected from the reflection spectrum 

to further reduce data redundancy. 

(4) Cross-validation is employed to identify the optimal variable subset, ultimately 

serving as the characteristic wavelength selected by CARS. 
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Establishment of retrieval model 

Random forest 

Random forest (RF) is a machine learning algorithm for classification and regression 

(Zhang et al., 2019). Subsequently using unselected samples for prediction in each tree. 

RF's arbitrary selection of features and variables mitigates the risk of overfitting in the 

model. In order to build the RF model, the number of variables (mtry) and the number of 

decision trees at the node of the binary tree in the model are adjusted. The inverse of the 

mean square error (MSE) is chosen as the fitness function value. In other words, the 

optimal model's fitness function value directly correlates with the size. The number of 

mtry steps is 1 at an interval of 1 to 9, and the number of decision trees is 100 at an interval 

of 100 to 2000. 

Partial least squares method 

Partial Least Squares Regression (PLSR) is capable of managing highly autocorrelated 

data and scenarios, demonstrating its efficacy as a multi-variable data analysis technique 

(Cheng and Sun, 2017). PLSR identifies the optimal function fit for a dataset by 

minimizing the sum of squared errors, particularly in scenarios involving significant 

correlations among independent variables. It can address the issue of correlation among 

hyperspectral data variables. 

XGBoost 

XGBoost algorithm is an integrated learning algorithm proposed by Chen and Guestrin 

(2016), involving two key components: the addition algorithm part (a strong learner is 

formed by the linear addition of a series of weak learners) and the forward distribution 

algorithm (a new learner generated in the next iteration is trained on the basis of the 

previous iteration). The base learner of XGBoost algorithm is the decision tree. The 

calculation formula is as follows Eq. (2): 

 

 𝑦𝑖̂ =  ∑ 𝑓𝑝(𝑊𝑖)

𝑃

𝑝=1

,     𝑓𝑝 ∈ 𝐹 (Eq.2) 

 

where iŷ  is the inversion value of the organic matter content of the ith soil sample; pf  

represents the pth decision tree;  

XGBoost algorithm is (3). 

 

 𝐿(𝑡) =  ∑ 𝑙

𝑗

𝑖=1

[𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

+  𝑓𝑡(𝑊𝑖)] +  Ω(𝑓𝑡) (Eq.3) 

 

where, 
( 1)ˆ t
iy
−

 represents the inversion value of the organic matter content of the ith soil 

sample at the t-1 iteration, and l represents the loss function, which measures the error 

between the inverted value of the soil organic matter content iŷ  and the true value iy , 

representing the regularization function to prevent overfitting of the model. 
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Testing model precision 

We verified the modeling performance from three aspects, where closer R² values to 1 

indicate a better model fitting. The validation set root mean square error (RMSE) was 

used to assess the model's estimation ability. The model's ability to estimate is improved 

when the RMSE is smaller. 

Results 

Sample set partitioning and feature extraction 

Table 1 shows the statistical results of SOM content in 50 soil samples collected in the 

high vegetation cover area. SOM content ranges from 8.18 to 37.11 g·kg-1 for the whole 

sample, 5.18 to 37.02 g·kg-1 for the modeling set, and 16.50 to 32.20 g·kg-1 for the test 

set. The modeling set encompasses the content range of the prediction set, with an overall 

coefficient of variation of 1.04, indicating medium variation. Among the 50 soil samples 

from the low vegetation cover area in Table 2, the SOM content range of the samples was 

7.32-45.42 g·kg-1, the sample range of the modeling set was 13.72-45.41 g·kg-1, and the 

sample range of the test set was 7.32-21.31 g·kg-1, with the overall coefficient of variation 

of 2.86. 

 
Table 1. The descriptive statistics of soil organic matter content in the sample set of high 

vegetation cover areas 

Data set 
Minimum value 

/(g/kg) 

Maximum value 

/(g/kg) 

Average value 

/(g/kg) 

Median 

/(g/kg) 

Standard 

deviation /(g/kg) 
CV 

All samples 5.18 37.11 21.22 20.30 6.27 1.04 

Training 5.18 37.02 14.91 18.90 6.38 2.96 

Validation 

Sample 
16.50 32.20 24.11 23.81 5.07 4.68 

 

 
Table 2. The descriptive statistics of soil organic matter content in the sample set of low 

vegetation cover areas 

Data set 
Minimum value 

/(g/kg) 

Maximum value 

/(g/kg) 

Average value 

/(g/kg) 

Median 

/(g/kg) 

Standard 

deviation /(g/kg) 
CV 

All samples 7.32 45.42 21.10 19.85 6.93 2.86 

Training 13.72 45.41 22.77 21.01 7.30 2.87 

Validation 

Sample 
7.32 21.31 17.21 18.71 3.78 4.94 

 

 

As shown in Figure 4, "Increasing Density" refers to the density at the sample data 

level, the quantity or distribution density of the samples participating in the screening in 

the corresponding characteristic band analysis, etc. It gradually increases with the color 

from blue to red, that is, the red end indicates a higher "density" situation It is used to 

visualize the distribution differences of soil characteristic bands under different "density" 

features (comparison between high vegetation coverage and low vegetation coverage 

areas). It is obvious that the distribution differences of soil characteristic bands in the low 

vegetation coverage area are more significant. The original spectral data and SOM were 

introduced into the CARS algorithm, and 32 feature bands were screened out according 
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to their importance as input variables for subsequent models. Based on the selected 

characteristic bands in the two test areas, the common bands were statistically obtained 

as shown in Figure 5. Among them, according to the importance dividing line of 0.4, the 

importance of the vast majority of bands is above 0.4, and the importance of the band 

near 1650 nm is the greatest, reaching 0.612. The importance is the least near the 

200-300 nm band, at 0.325. 

 

Figure 4. Distribution of soil characteristic bands after CARS screening(a) Characteristic 

bands of high vegetation cover areas and (b) characteristic bands of low vegetation cover areas 

 

 

Figure 5. Common characteristic bands of soil in different vegetation cover areas 

 

 

In this study, the 5 % area with the highest determination coefficient was used as the 

sensitive area of SOM. The sensitive areas of high vegetation coverage test area were 

mainly distributed in 407 ~ 465 nm, 652 ~ 715 nm, 988 ~ 1076 nm, 1305 ~ 1356 nm, 

1743 ~ 1833 nm, 1931 ~ 1989 nm (Figure 4a). The sensitive areas of the low vegetation 

coverage test area are mainly distributed in 479 ~ 534 nm, 944 ~ 1094 nm, 1222 ~ 1291 

nm, 1320 ~ 1392 nm, 1488 ~ 1537 nm, 1658 ~ 1740 nm (Figure 4b). On the whole, the 

SOM sensitive bands of soil under different vegetation coverage did not change 

significantly. 



Pan et al.: Hyperspectral inversion of soil organic matter under differential vegetation cover scenario based on CARS-RF 

- 9404 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9395-9412. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93959412 

© 2025, ALÖKI Kft., Budapest, Hungary 

Inversion results of soil organic matter content 

Accuracy verification of the soil organic matter content in the training set 

In order to verify the effectiveness of the proposed method, the feature bands of high 

vegetation cover areas and low vegetation cover areas in Zhaogu mining area were 

selected by CARS. Next, the performance of the PLSR algorithm, XGBoost algorithm 

and Random Forest (RF) algorithm were compared. The R² and RMSE in the regression 

model were used to evaluate the model performance. R² was used to measure the stability 

of the model. An R²>0.8 indicated that the model was stable. RMSE was used to test the 

predictive ability of the model, where smaller RMSE values indicated higher accuracies. 

We set the learning rate to 0.1 and the maximum depth of the template to 5. We also set 

the number of decision trees of the RF algorithm to 1000 and the number of trees of the 

XGBoost algorithm to 100. The sampling times of MC was set to 40 for CARS algorithm, 

and 90% of the samples were extracted in each iteration. At the same time, in order to 

expand the range of variables selected and reduce the influence of different initial 

conditions on SOM content inversion, the algorithm was run five times and the optimal 

model was selected. 

The model accuracy corresponding to each modeling method in different vegetation 

coverages was very similar (Figure 6). The accuracy measures of R² and RMSE of 

organic matter inversion by RF were 0.97 and 1.54 and 1.43, respectively. The R² of SOM 

inversion utilizing the PLSR algorithm fluctuated around 0.96, with RMSE values of 1.65 

and 1.78, respectively. XGBoost algorithm showed the best inversion accuracy in the 

training set by an R² reaching 0.98. On the whole, the training accuracy of the analysis 

model and the R² of the models established by different mathematical transformations 

were relatively high and similar, reaching to as high as 0.95. This suggests that both the 

modeling set and verification set are reasonably constructed, demonstrating a satisfactory 

fitting without overfitting, thereby confirming the feasibility of the model for subsequent 

testing. 

 

Figure 6. Precision of soil organic matter content inversion 
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Accuracy of soil organic matter content in the test set 

The performance of SOM inversion models in different vegetation coverage areas in 

Zhaogu mining area were compared in order to select the optimal inversion models. The 

inversion models were established by three modeling methods, RF, PLSR and XGBoost. 

The two parameters of R² and RMSE were used for evaluation and optimal model 

selection. 

The spectral characteristic bands selected by CARS, the inversion model. The results 

of the inversion model are shown in Figure 6. Based on the RF algorithm, the organic 

matter inversion in the laboratory spectra of high vegetation and low vegetation coverages 

in Zhaogu Mining area provided an R² of 0.9 and 095, both being above 0.9. The model 

performed relatively stable, and the R² of the test set and the training set were similar. 

RMSE reached 3.04 and 2.14, respectively, which indicated an excellent inversion of the 

organic matter content in the whole mining area. According to multiple cross-validations, 

PLSR inversion yielded R² of 0.79 and 0.78, and RMSE of 7.24 and 6.86, respectively. 

The accuracy gap was larger than RF, which may be related to the small number of 

samples in this experiment. The accuracy of the inversion model based on XGBoost 

algorithm was better than PLSR. The R² and RMSE of high and low vegetation cover 

areas were 0.85 and 0.89, and 6.21 and 5.32, respectively. Yet there was still a big gap 

compared with RF accuracy. 

SOM content optimal inversion model in Zhaogu mining area 

In order to screen the optimal inversion model of SOM content in Zhaogu mining area, 

the training results of different models in high vegetation cover area and low vegetation 

cover area were compared (as shown in Table 3). The performance of the three modeling 

methods was compared, and the optimal inversion model was selected as shown in 

Figure 6. The R² and RMSE exhibited varying alterations in the test set outcomes; 

however, the model demonstrating effective modeling retains high accuracy in the test set 

validation. Among them, the model established by RF algorithm had the best verifications 

by R² values of 0.90 and 0.95. The minimum RMSE values were 3.04 and 2.14, 

respectively, and the validation of PLSR and XGBoost models were similar, with and 

RMSE values ranging from 0.78 to 0.89 and 5.32 to 7.24, respectively. 

 
Table 3. Accuracy of the soil organic matter content inversion models 

Test Area Model 
Training set Test set 

R² RMSE R² RMSE 

High vegetation coverage area 

RF 0.97 1.54 0.90 3.04 

PLSR 0.96 1.65 0.79 7.24 

XGBoost 0.98 1.36 0.85 6.11 

Low vegetation coverage area 

RF 0.97 1.43 0.95 2.14 

PLSR 0.96 1.78 0.78 6.86 

XGBoost 0.98 1.24 0.89 5.32 

 

 

Furthermore, to investigate the efficacy of various modeling techniques on the test data 

set accuracy and the stability of SOM content, Figure 7 (depicting the fitting to the scatter 

plot of SOM content test values versus predicted values) illustrates that the fitting points 

of the observed and predicted values for the three models are clustered around the 1:1 



Pan et al.: Hyperspectral inversion of soil organic matter under differential vegetation cover scenario based on CARS-RF 

- 9406 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9395-9412. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_93959412 

© 2025, ALÖKI Kft., Budapest, Hungary 

line, with the RF model exhibiting a higher concentration of the fitting points. The 

constructed RF model exhibited an excellent stability on the test set and the training set, 

while the other two models had a weak generalization ability on the test set. In comparison 

to the model's training duration and validation performance, the RF model demonstrated 

significant efficacy, exhibiting high predictive accuracy and stability, and was more adept 

at estimating SOM content. In summary, the inversion performance of RF model was 

significantly better than PLSR and XGBoost models, with a faster training a lower chance 

of overfitting. The performance of the PLSR model was marginally inferior to that of 

XGBoost, likely due to the limited number of input samples, as the dataset size 

significantly influences the efficacy of the PLSR model, which excels with larger 

datasets. Furthermore, the parameter adjustment process of the PLSR model is intricate, 

and taking into account the time expenditure and model efficacy, the RF method was 

deemed suitable for the inversion of SOM content spectrum in the Zhaogu mining area. 

 

Figure 7. Scatterplot of the results of soil spectral organic matter content inversions by 

different models 

 

 

Discussion 

Soil hyperspectrum comprehensively represents its diverse physical and chemical 

properties, with a significant correlation between the two (Lu et al., 2015). Various 

nutritional elements in the soil and the spectral absorption peaks of other physical and 

chemical properties exhibit overlapping characteristics, demonstrating co-frequency and 

double-frequency phenomena, resulting in substantial redundant wavelength information 

within soil hyperspectral range (Li et al., 2020; Yuan et al., 2020). Feature selection 

algorithm. Currently, the commonly used feature selection algorithms in soil property 

inversion include correlation coefficient method (CC), genetic algorithm (GA) and CARS 

(He et al., 2023). The iron oxide model was 0.790, derived from multiple stepwise 
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regression to eliminate collinear wavelengths, based on CC's optimal band. The genetic 

algorithm employed by predecessors for feature selection has markedly enhanced the 

retrieval accuracy of soil mercury content in comparison to the direct inversion of 

multiple linear regression and backpropagation neural networks (Wang et al., 2015). The 

direct application of the CC algorithm for feature selection resulted in an excessive 

number of input variables in the modeling process, neglecting variable collinearity, which 

diminished prediction accuracy. The GA algorithm is prone to premature convergence 

(Altarabichi et al., 2023) and may settle into a local optimum. Conversely, the CARS 

algorithm effectively extracts optimal feature segment combinations by systematically 

eliminating redundant and insignificant features based on the importance of each band 

(Wang et al., 2021b). 

By integrating CARS algorithm and random forest (RF) model, a hyperspectral 

retrieval framework for soil organic matter (SOM) content in ore-grain composite area 

was successfully constructed. Compared to PLSR and XGBoost, RF models show 

significant accuracy advantages on the test set (R²: 0.90 -- 0.95; RMSE: 2.14-3.04), thanks 

to their unique dual randomness mechanism: On the one hand, sample bias is reduced 

through Bootstrap; On the other hand, random selection of feature subsets to split nodes 

effectively alleviates the interference of hyperspectral data multicollinearity to the 

model(SabbaghGol, Saadatfar, and Khazaiepoor 2024) . This feature enables RF to 

remain robust even when the sample size is limited (n=100), while XGBoost performs 

well in the training set (R²=0.98), but its hyperparameter sensitivity (such as learning rate, 

tree depth) may lead to insufficient generalization of the test set (Yang and Shami, 2020), 

especially in low vegetation cover areas, where complex spectral noise further magnifies 

this gap. Compared with the RF model (R²=0.89) in the source region of the three rivers 

in the literature (Wu et al., 2021), this study introduced CARS algorithm to screen the 

sensitive bands, which significantly improved the inversion accuracy of the low 

vegetation region (R²=0.95), indicating that the correlation between spectral 

characteristics of the ore-grain composite region and SOM can be enhanced through band 

optimization. 

However, model performance is still limited by the current data size and geographic 

range. Although the CARS algorithm reduces redundant band interference, the small 

sample size may lead to bias in feature importance assessment (Button et al., 2013), 

especially in high vegetation cover areas, spectral interference of litter and root exudates 

has not been completely decoupled. In addition, the study area concentrated on a single 

mining area, and did not cover the SOM variation characteristics of different climatic 

zones or soil types. Future research can build a spatiotemporal dynamic monitoring 

system through multi-region joint sampling, combining UAV hyperspectral and ground 

sensor networks. For example, the CARS-RF model is embedded in a lightweight edge 

computing device to analyze the spatial heterogeneity of SOM in real time, providing 

decision support for land restoration and precise fertilization in mining areas. 

In conclusion, this study verifies the high efficiency of CARS-RF framework for SOM 

inversion in ore-grain composite region, but its application potential needs to be further 

verified in larger scales and more complex environments. How to balance model accuracy 

and computational efficiency, and how to integrate multi-source data (such as liDAR, 

thermal infrared) to deepen the inversion mechanism will be the focus of research in the 

next stage. 
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Conclusions 

In this paper, the Zhaogu mining area, a typical coal-grain composite area, was selected 

as the research area. After processing the soil hyperspectral data by SG denoising and 

second-order differential spectral transformation. 

The results show that: 

(1) In SOM inversion, extracting the characteristic SOM spectrum for content 

inversion can not only enhance the inversion mechanism and reduce data redundancy, but 

can also significantly improve the inversion accuracy compared with the 400-2400 nm 

full spectrum modeling. For the soil spectral data under different vegetation coverages in 

the actual experiment, the inversion accuracy based on the characteristic spectral segment 

modeling was improved compared with the full spectrum modeling. 

(2) The CARS algorithm was used to optimize the features of the spectral data, and the 

bands with the greatest influence on the modeling accuracy were extracted from the 

reflection spectrum, and the inversion model of SOM content was constructed by 

combining PLSR, RF and XGBoost. Inversion results based on CARS-RF showed the 

best prediction performance on both training and validation sets. R² and RMSE were 

obtained 0.90 and 0.95 and 3.04 and 2.14 in high and low vegetation cover areas, 

respectively. The results showed that the hyperspectral retrieval framework combining 

SG denoising, second-order differential spectral transform, CARS and RF can provide a 

scientific basis for the rapid monitoring of SOM content. 

(3) Since soil environment is affected by many factors, such as parent material, texture, 

organic matter content, etc., the influence of these factors on spectral characteristics is 

not deeply discussed in this paper, which may lead to insufficient adaptability of the 

model to the complex soil environment. Although the performance comparison of PLSR, 

RF and XGBoost models is mentioned in this paper, it is not deeply compared with other 

hyperspectral inversion methods (such as BP neural network, SVM, etc.). This limits the 

comprehensiveness and credibility of the findings. Therefore, validation will be carried 

out in more mining areas and different types of soil environments in the following studies 

to improve the universality and applicability of the model, and the hyperspectral remote 

sensing data will be fused with other sensor data (such as UAV images and ground 

measured data, etc.) to improve the inversion accuracy and stability. 
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